3ounds on the Mcan Classification Error Rate of Multiple Experts

Padhraic Smyth
Jet 1 ‘repulsion Laboratory, MS 5253660
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109
cmail:pjs@aig.jpl.nasa.gov

September 22, 1995

Abstract

A databasc contains N items, each item belonging to one and only one of a finite set. of
classes. The {rue class labels for these items arc unknown. K experts each provide a set of
N classification labels for the N items in the database. In this papc it is shown that given
the experts’ labels, onc can compute simple bounds o the average classification accuracy of
the experts relative to the unknown true labels. Noassumptions are made about the labelling
patiernsof the experts or the nature of the data. The bounds arc useful in practical classification
problemns where absolute ground truth is unknown and experts must subjectively provide labels
for feature data. ‘Jim incthod is applied to the problen: of assessing t e collective accuracy of
geologists who count volcanoes in images of Venus.
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1 Introduction and Notation

Consider that a person (an observer) has a databasc of N items, each described by a feature vector
z;,1 <i< N. Each itcm belongs to onc of m classes, 1> 2: the classes arc mutually exclusive
and exhaustive. It is assumed that for each item z; then ¢ exists a t ruc label w; (a reference label)
which is unknown. For example, if the z; were pixel mecasurements of anobject of unknown classin
a remotely-sensed image, the! true class label could in principle beobtained by visiting the ground
site and ascertaining the class of the object in anunambiguous manncr (so called “ground truth”) ,

The observer is assumed to have no information whatsocver about the true class labels of the
items. Let K experts (K > 1) each provide a set or N labels for the N items, i.e., cach expert
examines cachitem g;in turn and provides a subjective estimate of the true class label for that




item. Define ¢ as the mean ¢l assification error rale, averaged across the K experts, relative to the
true labels, i.e., over all the experts, a certain fraction of items have been mislabelled relative to
the truth. By definition
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where, for the label of labeller k on the ¢th item, ¢ = 1 if it is inerror and ik = 0 if it is correct.

The fact that e is defined as the mean error rate of K labellers rather than the error rate of any
onc labeller is a key point and enables calculation of the bounds. Without knowing ground truth
one can not make any statements about the crrors of an individual labeller. References to “errors”
will be assumed to mean “errors relative to ground truth” throughout the paper.

2 Motivation and Background for this Problem

Assessing the collective classification accuracy of a group of experts o11 a databasc is an important
issue incertain practical classification problems. For cxainple, scientists subjectively label pixels or
regions in a remote-scnsin$ image into a set of known ground-cover classes, or medical specialists
classify medical records into particular diagnostic cl asscs. In such cases obtaining the true class
labels for the data is frequently cither physically imnpossible or prohibitively expensive. For example,
in remote-sensing it may bc impractical to visit the remote sites to ascertain ground truth. In
medical diagnosis it may be too expensive to perform the necessary tests or surgery to determine
wit h absolute cert ainty what disease the patient actually hiwd. in classification-oriented applications,
as online data become more readily available, the propor tion of the data for which the true class
labels arc known is likely to continuc to decrease. Thus, being able to infer statements about the
accuracy of human experts is quite valuable in these types of problems.In Section 4 we describe a
particular application of the method to counting volcanoes in radar iniages of Venus. T'he volcano
counting problem originally motivated this work: it is a problem of considerable geologic importance
involving multiple expert opinions.

3 A Lower Bound on ¢

From IMquation (1), the average error rate can bewritten as

e= -3 e 2
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where €= e, is the total number of errors made onitem,0 <¢; <K.

Consider the ith item. Let ny; be the number of times that label 7 was provided by the K
labeliers for itend, O <n;; < K.
Let j*indidate the correct label for the item. Thus /¢ — M is the number of errors madeon:

the 7th item. Since §* is unknown, onc has

ci>min{k -niy}, 1<j<M. (3)
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Thus,
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This bound is a function of the number of disagrecements made by thelabellers. If there arc no
disagrecments, theboundis O. In the worst-cam scenario the labellers agree on alliteins but arc
incorrect incach case, yiclding a lower bound of O while the true crrorrateis 1. In general, however,
the bound will be non-zero for practical problems, thus providing anindication of the overall cr ror
rate of a set of experts. Note that at least onc of the K labellersmust have an error-rate greater
than or cqual to the lower b ound : thus, for example, even if thelabellers arc noted experts, the
bound will imply that at least one of thcm has an error rate grecater than some value, relative to
ground truth. If this value is large (say greater than 10%)it may indicate thc need to rc-evaluate
the quality of thefeature data z;, or the quality of the expertlabelling process, or both.

Equation (4) is the lowest bound onc can obtain on the mecanciy or rate without additional
information) about the problem being available. For example, if K =2 and one of the labellers is
always correct, thenthe bound is exactly the mean error rate.

3.1 Binary Classification

With binary classification, m =2, we can index thelabelling patterns by the number of labels
belonging to one of the classes ( “detections” ), O <d < K. Let ng be the number of labelling
patterns which have d detections (fo:ond::N if all items arc labelled). For example, 1 is the
number of items cach of which were labcelled as a detect ion by only one of the K labellers. For
binar y labcls, the bound reduces to:
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3.2 Binary Classification with Two Labcllers

With K == 2, n
. 1
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where nyis the number of items labelled by the 2 experts where they disagree, ie., onc gets the
simple result that the mcan error rate is lower bounded by half t he fraction of disagreements. 1 f
two labcllers disagree on all items, their mean error rate must be (05 (which also equals the bound
in this case).



3.3 An Upper Bound on ¢

One can also derive a simple uppet bound 011 é:
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This upper bound is always greater than or equal to (1 - ;%). Thus, it is of limited value in
practice, since it says that the mean error rate perlabeller is no worse than 1 — ;{;,whichinturn,
for reasonably-sized m, is quite close to 1 (the trivialupper bound).

4 Application of the Lower Bound

4.1 Catalog Generation in Scientific A pplications

Inanumber of observational sciences such as astronomy and planetary geology, a common step in
the scientific process is to convert raw data (such as images) into a catalog of objects of interest
(Fayyad et al. (in press)). Such catalogs form a standard data product which can be used by
otherscientists as the basis for quantitative scientific studies (such as investigations of the spatial
clustering patterns of objects, etc.). lxamplesinclude counting stars and galaxies in telescope
images to generate a sky catalog, counting impact craters onthe surface of the moon, countingand
characterizing sunspots in images of the Sun, and counting volcanoes in radar images of Venus.
Typically the cataloging is carried out by known experts in the field.

Inecach of these applications, the quality of the final catalog is inevitably a function of the
subjective nature of the cataloging process. In some applications there may be little variation
between the labels provided by different experts for the same object: i other applications the
variance may be quite high, indicating that the data in the catalog should be treated accordingly.
The variation in expert opinion may be due to visual aml »iguity introducedby the resolution limits
of the data, perhaps the pixel-resolution of an imaging instrument. The lower bounds on error
rate described earlier provide a simple method to ascertain a lower bound on the accuracy of the
subjective cataloging process: an application to volcano counting is described below.

4.2 Bounding the Mean Accuracy of Volcano Counting

T'he Magellan spacecraft orbited Venus from 1990 to 1994 and transmitted back to Earth a high
resolution synthetic aperture image map of the planet, approximately 30,000 1Mybte images in
total. ‘1 'he stud y of volcanic features on the surface of Venusis a key issuc in planetary geology
duc to the predominance of volcanism on the planct (Saunders et al. (1 992)). Generating a
comprchensive volcano catalog from the Magellan data is a prercquisite formore advanced studies
suchas cluster analysis of the volcano locations. Of interest inthe context of this paper is the
accuracy of the volcano labels provided by planctary geologists.




In previous work a pattern recognition system for autornatically counting volcanoes in the
Magellanimages of Venus has been developed: the patterrecognition system is described in det ail
elsewhere (Burletal. (1994a)) and is not of direct interest here. As part of the development of
the pattern recognition system, several planctary geologists, considered experts in Venus volcanism,
provided labels for sets of Venus images as training and test data. Significant variability between the
geologist’s labcllings was noticed, thus motivating work ontheproblem of quantifying classification
accuracy of both humansand algorithms in the absence of ground truth. The variability in the
labelling appears to be primarily due to the relatively low signal-to-noise ratio (relative to small
volcano structure) in the SAR images (Fayyad et al. (in press)).

Isach geologist examined sets of images independently and used Inc)use-clicks within a graphical
uscr-interface to indicate their estimate of wherethe volcanoes werelocated within a given image.
The first labelling experiment consisted of 4 images and 4 experts (geologists A, B,C, and D).
Between the 4 geologists, 269 estimated volcano locations were foundin total in the 4 images.
Jonsider this to be the databasce of N = 269 items with binary labels: volcano or non-volcano.
One can think of each “item”as a local pixel window or region of interest. Thelower bound on
mean error rate (using Equation (4)) was found to be 19.370, i.e., thic average error rate among
geologists A, B, C,and D, labelling volcanoes onthese particular 4 Magellan images, is at least
19.3% relative to ground truth’ .

The second labelling experiment consisted of 2 geologists (A and I3 from the first experiment)
who each individually labelled 38 images (different fromn the first 4). In this case 512 possible
volcano locations were found in total. Again, considering this to be a database of N = 512 items
with binary labels results in a lower bound on the mean crror rate of A and B of 24 .1%. If only the
labellings of geologists A and B arc! considered onthe 4 images in the first experiment, they made
al least 22.2'%0 errors on average (for these 2 geologists on these 4 images).

Across different subsets of images, with different sets of geologists, the results for the volcano
problem have consistent] y shown a lower-bound on the incan error rate of about 20%. Thus, one
can state that typically atleastone of the expert geologists is in error at least 20% of the time in
terms of volcano labelling, over a range of different Magcllan images, relative to the ground truth.
The true mean error rate for the geologists could in fact be much higher than 20%: the fact that
it is at least this high indicates that interpretation of volcano catalogs obtained from the Magellan
datasct (even those provided by the experts in the field) requires some care. In terms of developing
a pattern recognition system, the result shows that both the training and test data sets contain a
significant degree of noise in the labels and this must be taken into account both in training and
cvaluating any such system (Burlet al. (1994b), Smythet al. (in press)).

5 Comments on Related Work

I ’revious work on modelling noise in class labels has largely relicd on parametric models of the noisy
labelling process. For cxamiple, rating models assume th at a set of labellers provides a discrete set
of ratings of the likelihood that anitcm belongs to a class, and from the ratings of multiple la-
bellers an overall combination model and posterior cstimates for individual items arc found (French
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(1 985), Agresti (] 992),Ucbersax @ 993)). A key issuc is the naturc of the assumptions about the
independence of tile different labellers.

In another distinct approach, the error patterns in class labelling arc assumed to obey a par-
ticular model and the implications arc analysed (Aitchison and Begg (1 976), Titterington (1989),
Lugosi (1 992)). For example, as the noise in the labelling process inci cases the effect on the esti-
mation performance of certain parametric classification methods has been investigated (Krishnan
aud Nandy (1 990)).

Both of these general approaches bear some relation to the problemn discussed in this paper
aud indeed the ratings approach has beenused with success on the volcano data (Siythet al., in
press). | lowever, the results inthis paper arc distinct fiom this prior work in the sense that the
bounds derived here make no assumptions whatsocver about the nature of the labelling errors, the
independence relationships between the K labellers, or the underlying distribution of the data.

6 conclusion

Simple bounds were derived for the mean classification error rate of K labellers in the absence of
ground truth. The lower bound was applied to data fronia remote-sensing image analysis problem
and the results confirmed that thc subjective error rate for the problem is quite high. The method
has applications to classification problems where data must belabelledin a subjective manner by
experts andthereis no ground truth available to calibrate theiiperformance.
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